Polynomial Convergence of a Predictor-Corrector Interior-Point Algorithm for LCP
نویسنده
چکیده
We establishe the polynomial convergence of a new class of pathfollowing methods for linear complementarity problems (LCP). Namely, we show that the predictor-corrector methods based on the L2 norm neighborhood. Mathematics Subject Classification: 90C33, 65G20, 65G50
منابع مشابه
Corrector-predictor arc-search interior-point algorithm for $P_*(kappa)$-LCP acting in a wide neighborhood of the central path
In this paper, we propose an arc-search corrector-predictor interior-point method for solving $P_*(kappa)$-linear complementarity problems. The proposed algorithm searches the optimizers along an ellipse that is an approximation of the central path. The algorithm generates a sequence of iterates in the wide neighborhood of central path introduced by Ai and Zhang. The algorithm does not de...
متن کاملPolynomial interior point algorithms for general LCPs
Linear Complementarity Problems (LCP s) belong to the class of NP-complete problems. Therefore we can not expect a polynomial time solution method for LCP s without requiring some special property of the matrix coefficient matrix. Our aim is to construct some interior point algorithms which, according to the duality theorem in EP form, gives a solution of the original problem or detects the lac...
متن کاملA Constraint-Reduced Algorithm for Semidefinite Optimization Problems with Superlinear Convergence
Constraint reduction is an essential method because the computational cost of the interior point methods can be effectively saved. Park and O’Leary proposed a constraint-reduced predictor-corrector algorithm for semidefinite programming with polynomial global convergence, but they did not show its superlinear convergence. We first develop a constraintreduced algorithm for semidefinite programmi...
متن کاملA Constraint-reduced Algorithm for Semidefinite Optimization Problems using HKM and AHO directions
We develop a new constraint-reduced infeasible predictor-corrector interior point method for semidefinite programming, and we prove that it has polynomial global convergence and superlinear local convergence. While the new algorithm uses HKM direction in predictor step, it adopts AHO direction in corrector step to achieve a faster approach to the central path. In contrast to the previous constr...
متن کاملOn a General Class of Interior-point Algorithms for Semideenite Programming with Polynomial Complexity and Superlinear Convergence
We propose a uniied analysis for a class of infeasible-start predictor-corrector algorithms for semideenite programming problems, using the Monteiro-Zhang uniied direction. The algorithms are direct generalizations of the Mizuno-Todd-Ye predictor-corrector algorithm for linear programming. We show that the algorithms belonging to this class are globally convergent, provided the problem has a so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011